Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2110128

ABSTRACT

The COVID-19 pandemic, promoted by the SARS-CoV-2 respiratory virus, has resulted in widespread global morbidity and mortality. The immune response against this pathogen has shown a thin line between protective effects and pathological reactions resulting from the massive release of cytokines and poor viral clearance. The latter is possibly caused by exhaustion, senescence, or both of TCD8+ cells and reduced activity of natural killer (NK) cells. The imbalance between innate and adaptive responses during the early stages of infection caused by SARS-CoV-2 contributes to the ineffective control of viral spread. The present study evaluated the tissue immunoexpression of the tissue biomarkers (Arginase-1, CCR4, CD3, CD4, CD8, CD20, CD57, CD68, CD138, IL-4, INF-α, INF-γ, iNOS, PD-1, Perforin and Sphingosine-1) to understand the cellular immune response triggered in patients who died of COVID-19. We evaluated twenty-four paraffin-embedded lung tissue samples from patients who died of COVID-19 (COVID-19 group) and compared them with ten lung tissue samples from patients who died of H1N1pdm09 (H1N1 group) with the immunohistochemical markers mentioned above. In addition, polymorphisms in the Perforin gene were genotyped through Real-Time PCR. Significantly increased tissue immunoexpression of Arginase, CD4, CD68, CD138, Perforin, Sphingosine-1, and IL-4 markers were observed in the COVID-19 group. A significantly lower immunoexpression of CD8 and CD57 was also found in this group. It is suggested that patients who died from COVID-19 had a poor cellular response concerning viral clearance and adaptive response going through tissue repair.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , Arginase , Perforin , Sphingosine , Interleukin-4 , Pandemics , SARS-CoV-2 , Immunity, Cellular
2.
Viruses ; 14(8)2022 07 31.
Article in English | MEDLINE | ID: covidwho-1969509

ABSTRACT

COVID-19 is a viral disease associated with an intense inflammatory response. Macrophage Activation Syndrome (MAS), the complication present in secondary hemophagocytic lymphohistiocytosis (sHLH), shares many clinical aspects observed in COVID-19 patients, and investigating the cytolytic function of the responsible cells for the first line of the immune response is important. Formalin-fixed paraffin-embedded lung tissue samples obtained by post mortem necropsy were accessed for three groups (COVID-19, H1N1, and CONTROL). Polymorphisms in MAS cytolytic pathway (PRF1; STX11; STXBP2; UNC13D and GZMB) were selected and genotyping by TaqMan® assays (Thermo Fisher Scientific, MA, USA) using Real-Time PCR (Applied Biosystems, MA USA). Moreover, immunohistochemistry staining was performed with a monoclonal antibody against perforin, CD8+ and CD57+ proteins. Histopathological analysis showed high perforin tissue expression in the COVID-19 group; CD8+ was high in the H1N1 group and CD57+ in the CONTROL group. An association could be observed in two genes related to the cytolytic pathway (PRF1 rs885822 G/A and STXBP2 rs2303115 G/A). Furthermore, PRF1 rs350947132 was associated with increased immune tissue expression for perforin in the COVID-19 group. The genotype approach could help identify patients that are more susceptible, and for this reason, our results showed that perforin and SNPs in the PRF1 gene can be involved in this critical pathway in the context of COVID-19.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Macrophage Activation Syndrome , Biopsy , COVID-19/genetics , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Membrane Proteins/genetics , Perforin/genetics , Perforin/metabolism , Polymorphism, Single Nucleotide
3.
Transl Res ; 231: 55-63, 2021 05.
Article in English | MEDLINE | ID: covidwho-939331

ABSTRACT

Although some evidence showed the activation of complement systems in COVID-19 patients, proinflammatory status and lectin pathway remain unclear. Thus, the present study aimed to demonstrate the role of MBL and ficolin-3 in the complement system activation and compared to pandemic Influenza A virus H1N1 subtype infection (H1N1pdm09) and control patients. A total of 27 lungs formalin-fixed paraffin-embedded samples (10 from H1N1 group, 6 from the COVID-19 group, and 11 from the control group) were analyzed by immunohistochemistry using anti-IL-6, TNF-alfa, CD163, MBL e FCN3 antibodies. Genotyping of target polymorphisms in the MBL2 gene was performed by real-time PCR. Proinflammatory cytokines such as IL-6 and TNF-alpha presented higher tissue expression in the COVID-19 group compared to H1N1 and control groups. The same results were observed for ICAM-1 tissue expression. Increased expression of the FCN3 was observed in the COVID-19 group and H1N1 group compared to the control group. The MBL tissue expression was higher in the COVID-19 group compared to H1N1 and control groups. The genotypes AA for rs180040 (G/A), GG for rs1800451 (G/A) and CC for rs5030737 (T/C) showed a higher prevalence in the COVID-19 group. The intense activation of the lectin pathway, with particular emphasis on the MBL pathway, together with endothelial dysfunction and a massive proinflammatory cytokines production, possibly lead to a worse outcome in patients infected with SARS-Cov-2. Moreover, 3 SNPs of our study presented genotypes that might be correlated with high MBL tissue expression in the COVID-19 pulmonary samples.


Subject(s)
COVID-19/pathology , Lectins/metabolism , Lung Injury/metabolism , Lung Injury/pathology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Autopsy , Case-Control Studies , Complement Activation/physiology , Cytokines/genetics , Cytokines/metabolism , Female , Genotype , Humans , Immunohistochemistry , Influenza A Virus, H1N1 Subtype , Influenza, Human/metabolism , Influenza, Human/pathology , Lung/pathology , Lung/virology , Lung Injury/virology , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
4.
Sci Rep ; 10(1): 18689, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-894418

ABSTRACT

The COVID-19 fatality rate is high when compared to the H1N1pdm09 (pandemic Influenza A virus H1N1 subtype) rate, and although both cause an aggravated inflammatory response, the differences in the mechanisms of both pandemic pneumonias need clarification. Thus, our goal was to analyze tissue expression of interleukins 4, 13, (IL-4, IL-13), transforming growth factor-beta (TGF-ß), and the number of M2 macrophages (Sphingosine-1) in patients who died by COVID-19, comparing with cases of severe pneumopathy caused by H1N1pdm09, and a control group without lung injury. Six lung biopsy samples of patients who died of SARS-CoV-2 (COVID-19 group) were used and compared with ten lung samples of adults who died from a severe infection of H1N1pdm09 (H1N1 group) and eleven samples of patients who died from different causes without lung injury (CONTROL group). The expression of IL-4, IL-13, TGF-ß, and M2 macrophages score (Sphingosine-1) were identified through immunohistochemistry (IHC). Significantly higher IL-4 tissue expression and Sphingosine-1 in M2 macrophages were observed in the COVID-19 group compared to both the H1N1 and the CONTROL groups. A different mechanism of diffuse alveolar damage (DAD) in SARS-CoV-2 compared to H1N1pdm09 infections were observed. IL-4 expression and lung remodeling are phenomena observed in both SARS-CoV-2 and H1N1pdm09. However, SARS-CoV-2 seems to promote lung damage through different mechanisms, such as the scarce participation Th1/Th17 response and the higher participation of the Th2. Understanding and managing the aggravated and ineffective immune response elicited by SARS-CoV-2 merits further clarification to improve treatments propose.


Subject(s)
Coronavirus Infections/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Lung/metabolism , Pneumonia, Viral/metabolism , Aged , Aged, 80 and over , Biomarkers/metabolism , COVID-19 , Coronavirus Infections/pathology , Female , Humans , Interleukin-13/genetics , Interleukin-4/genetics , Lung/pathology , Macrophages/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Sphingosine/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL